Program	BS Computational Statistics and Data Analytics	Course Code	CSTA- 304	Credit Hours	3
Course Title Machine Learning					
Course Introduction					
Machine learning is one of the fastest growing areas of computer science, with far-reaching applications. The aim of this course is to: a) Present the basic machine learning concepts; b) Present a range of machine learning algorithms along with their strengths and weaknesses; c) Apply machine learning algorithms to solve problems of moderate complexity.					
	Learni	ng Outcomes			
 By the end of this course, students will be able to: 1. Learn the basic concepts and techniques of Machine Learning. 2. Develop the skills of using recent machine learning software for solving practical problems. 3. Gain hands-on experience of doing independent study and research. 					
	Course Content		As	signments/Read	ings
Week 1	Unit – I Introduction to Machine Learning: Overview of machine learning concepts, algorithms, and applications Understanding the importance of machine learning in pattern recognition and data analysis Unit – II Machine Learning and Pattern Recognition: Exploring the relationship between machine learning and pattern recognition Understanding how machine learning algorithms				
Week 2	Unit – III Supervised Learning: Linear and Non-linear Regression: Introduction to supervised learning and regression analysis Unit – IV Implementation of linear regression for modeling linear relationships in data				
Week 3	Veek 3 Unit – V Non-parametric Methods: Overview of non-parametric methods such as k- nearest neighbors (k-NN) and kernel density estimation Unit – VI Application of non-parametric methods for modeling complex data distributions Image: Complex data distribution				

	Unit – VII	
Week 4	Support Vector Machines:	
	Understanding support vector machines (SVMs) and	
	their use for classification and regression tasks	
	Unit – VIII	
	Exploring the concept of large-margin classifiers in	
	SVMs	
	Unit – IX	
	Model/Feature Selection:	
	Techniques for selecting optimal models and	
Week 5	features in machine learning	
	Unit – X	
	Introduction to regularization methods for	
	preventing overfitting	
	Unit – XI	
	Kernel Methods:	
	Deep dive into kernel methods and their role in non-	
	linear classification and regression	
Week 6	Understanding kernel functions and their properties	
	Unit – XII	
	Clustering Algorithms: K-means:	
	Introduction to unsupervised learning and clustering	
	algorithms	
	Unit – AIII Implementation of the K means algorithm for	
	nuplementation of the K-means algorithm for	
Wook 7	Unit VIV	
WEEK /	$\operatorname{Expectation}$ -Maximization:	
	Understanding the expectation-maximization (FM)	
	algorithm for fitting probabilistic models	
	Unit – XV	
	Application of EM algorithm in mixture model	
	estimation	
	Unit – XVI	
Week 8	Gaussian Mixture Models:	
	Overview of Gaussian mixture models (GMMs) and	
	their use for modeling complex data distributions	
	Implementation of GMMs for clustering and density	
	estimation tasks	
Week 9	Unit – XVII	
	Anomaly Detection:	
	Techniques for detecting anomalies or outliers in	
	data	
	Unit – XVIII	
	Application of anomaly detection algorithms such as	
	isolation forests and one-class SVMs	

	Unit – XIX	
	Artificial Neural Networks:	
	Introduction to artificial neural networks (ANNs) as	
Week 10	a powerful machine learning paradigm	
	Unit – XX	
	Understanding the architecture and training process	
	of ANNs	
	Unit – XXI	
	Reinforcement Learning:	
	Overview of reinforcement learning (RL) and its	
Week 11	application in sequential decision-making tasks	
	Unit – XXII	
	Introduction to Markov decision processes (MDPs)	
	as a framework for RL	
	Unit – XXIII	
	Ensemble Learning: Bagging:	
	Explanation of ensemble learning techniques and	
Week 12	their benefits	
	Unit – XXIV	
	Introduction to bagging as an ensemble method for	
	improving model performance	
	Unit – XXV	
	Random Forests:	
Weels 12	Understanding random forests as an ensemble	
week 15	learning method based on decision trees	
	Unit – XXVI	
	Random Forests Continued	
	Unit – XXVII	
	Implementation of random forests for classification	
	and regression tasks	
Week 14	Unit – XXVIII	
	Boosting:	
	Introduction to boosting algorithms such as	
	AdaBoost and Gradient Boosting	
	Unit – XXIX	
	Advanced Topics in Ensemble Learning:	
Week 15	Exploration of advanced ensemble learning	
	techniques such as stacking and gradient boosting	
	variants	
	Unit – XXX	
	Discussion on the advantages and limitations of	
	ensemble methods	
Week 16	Practical Applications and Case Studies:	
	Real-world applications of machine learning	
	algorithms through case studies and projects	

	Unit – XXXII	
	Hands-on experience with implementing and	
	evaluating machine learning models using popular	
	libraries like scikit-learn or TensorFlow	
	Textbooks and Reading Material	
Text Book		

1. Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.

Suggested Readings

- 1. Alpaydin, E. (2014). Introduction to machine learning. MIT press.
- 2. Marsland, S. (2011). *Machine learning: an algorithmic perspective*. Chapman and Hall/CRC.

Teaching Learning Strategies

Class Lecture method, which includes seminars, discussions, assignments and projects. (Audio-visual tools are used where necessary)

Assignments: Types and Number with Calendar

According to the choice of respective teacher.

Assessment			
Sr. No.	Elements	Weightage	Details
1.	Midterm Assessment	35%	It takes place at the mid-point of the semester.
2.	Formative Assessment	25%	It is continuous assessment. It includes: Classroom participation, attendance, assignments, and presentations, homework, attitude and behavior, hands-on-activities, short tests, quizzes etc.
3.	Final Assessment	40%	It takes place at the end of the semester. It is mostly in the form of a test, but owing to the nature of the course the teacher may assess their students based on term paper, research proposal development, field work and report writing etc.